Towards a Methodology for Integrated Design of Mechatronic Servo Systems
نویسندگان
چکیده
Traditional methods for mechatronics design are often based on a sequential approach, where the mechanical structure is designed first, and then fitted with off-the-shelf electric motors, drive electronics, gearheads and sensors. Finally a control system is designed and optimized for the already existing physical system. Such a design method, that doesn’t consider aspects from a control point of view during the design of the physical system, is unlikely to result in a system with optimal control performance. Furthermore, to separately design and optimize each of the physical components will, from a global perspective, generally not result in a system that is optimal from a weight, size or cost perspective. In order to reach the optimal design of an integrated mechatronic system (mechatronic module) it is necessary to treat the system as a whole, considering aspects from all involved engineering domains concurrently. In this thesis such an approach to integrated design of mechatronic servo systems is presented. A design methodology that considers the simultaneous design of the electric machine, gearhead, machine driver and control system, and therefore enables global optimization, has been developed. The target of the design methodology is conceptual design and evaluation. It is assumed that the load to be driven by the servo system is known and well defined, a load profile describing the wanted load motion and the corresponding torque, is required as input. The methodology can then be used to derive the lightest or smallest possible system that can drive the specified load. Furthermore, the control performance is evaluated and optimized, such that the physical system design and the controller design are integrated. The methodology is based on modelling and simulation. Two types of component models have been developed, static and dynamic models. The static models describe relations between the parameters of the physical components, for example a component’s torque rating as function of its size. The static models are based on traditional design rules and are used to optimize the physical parts of the system. The dynamic models describe the behaviour of the components and are used for control system design and performance optimization. The gear ratio is identified to be the most central design variable when designing and optimizing electromechanical servo systems. The gear ratio directly affects the required size of the gearhead, electric machine and the machine driver. But it has also large influences on the system’s control performance. It is concluded that high gear ratios generally are better from a control point of view than low ratios. A consequence of this is that it is possible, without compromising the control performance, to use less expensive (less accurate) sensors and microprocessors in high gear ratio servo systems, while low gear ratio systems require more expensive hardware. It is also concluded that it is essential to include all performance limiting phenomena, linear as well as non-linear, in this type of integrated analysis. Using for example a linearized system description for controller design, means that many of the most important couplings between control system and physical system design are overlooked.
منابع مشابه
On Design Methods for Mechatronics Servo Motor and Gearhead
The number of electric powered sub-systems in road-vehicles is increasing fast. This development is primarily driven by the new and improved functionality that can be implemented with electromechanical sub-systems, but it is also necessary for the transition to electric and hybrid-electric drive trains. An electromechanical sub-system can be implemented as a physically integrated mechatronic mo...
متن کاملIFAC PROFESSIONAL BRIEF Modelling of Physical Systems for the Design and Control of Mechatronic Systems
Mechatronic design requires that a mechanical system and its control system be designed as an integrated system. This contribution covers the background and tools for modelling and simulation of physical systems and their controllers, with parameters that are directly related to the real-world system. The theory will be illustrated with examples of typical mechatronic systems such as servo syst...
متن کاملIntegrated Mechatronic Design for Servo Mechanical Systems
Mechatronic systems typically exhibited high a degree of complexity due to the strong cross coupling of the involved different engineering disciplines such as mechanical, electronic and computer. This complexity originates from the large number of couplings on various levels of the contributing elements and components, coming from different disciplines. The difficulty for the design engineer in...
متن کاملM. Valasek Highly Efficient Models and Simulations - the Basis of Design of Mechatronic Systems
Mechatronics is the future of mechanical engineering if not of all engineering. Mechatronics is the synergetic combination of mechanical systems with electronics and intelligent computer control 1 . The present most mechatronic product is vehicles that clearly demostrate the combination of components, solutions and technologies from the intersecting circles of mechanical, electrical, control an...
متن کاملMechatronic Hand Design with Integrated Mechanism in Palm for Efficiency Improve of the Finger.
One of the most important case in humanoid robot designing is hand, which it consider as an country development. High percentage of robot work quality depend on hand capability. A robot function increase with hand movement. One of important movement in artificial hand capability relate to fingers lateral movement. This case has more effect intake of special objects such as round shape or moving...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007